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It is well known that top– down expectations affect perceptual processes. Yet, remarkably little is known about the relationship between
expectations and conscious awareness. We address three crucial outstanding questions: (1) how do expectations affect the likelihood of
conscious stimulus perception?; (2) does the brain register violations of expectations nonconsciously?; and (3) do expectations need to be
conscious to influence perceptual decisions? Using human participants, we performed three experiments in which we manipulated
stimulus predictability within the attentional blink paradigm, while combining visual psychophysics with electrophysiological record-
ings. We found that valid stimulus expectations increase the likelihood of conscious access of stimuli. Furthermore, our findings suggest
a clear dissociation in the interaction between expectations and consciousness: conscious awareness seems crucial for the implementa-
tion of top– down expectations, but not for the generation of bottom-up stimulus-evoked prediction errors. These results constrain and
update influential theories about the role of consciousness in the predictive brain.
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Introduction
A rapidly growing body of work indicates that sensory processing
is strongly influenced by expectations we have about likely states
of the world. Such expectations are shaped by the context in
which we are operating, but also by learning, experience, and our
genetic makeup (Friston, 2005; Bar, 2009; Summerfield and de
Lange, 2014). Expectations are typically thought to originate

from higher-level brain regions, such as the (pre)frontal cortex,
which may guide information processing in lower-level sensory
regions via top– down projections. In this framework, what we
consciously see is proposed to be strongly influenced by the brain’s
expectations about, or its best guess of, the outside world (Gregory,
1980; Hohwy, 2012; Panichello et al., 2012). Initial studies support
the idea that the brain uses information in the environment to
build expectations of stimulus frequency or conditional proba-
bilities to modify perceptual processing (Bar, 2004; Kok et al.,
2012). These ideas have been formalized in theoretical models,
such as predictive coding and sequential sampling models (Friston,
2005; Ratcliff and McKoon, 2008; Clark, 2013). Although these
frameworks are attractive in their simplicity, how exactly expecta-
tions shape conscious perception and to what extent awareness
guides the formation of expectations are still largely unknown.

At present, there are at least three issues that need to be re-
solved to further our understanding of the relationship between
expectations and consciousness. The first issue relates to the ef-
fect that expectations may have on conscious awareness itself. It
has been shown that valid expectations increase the speed of con-

Received July 10, 2017; revised Nov. 9, 2017; accepted Nov. 26, 2017.
Author contributions: E.L.M., H.A.S., F.P.d.L., and S.v.G. designed research; E.L.M. performed research; E.L.M.,

H.A.S., F.P.d.L., and S.v.G. analyzed data; E.L.M., H.A.S., F.P.d.L., and S.v.G. wrote the paper.
The authors declare no competing financial interests.
This work was supported by the Netherlands Organization for Scientific Research (NWO VENI 451-11-007

awarded to S.v.G.; NWO VIDI 452-13-016 awarded to F.P.d.L.), the European Research Council (ERC-2015-
STG_679399 awarded to H.A.S.) and the James S. McDonnell Foundation (Understanding Human Cognition,
220020373, awarded to F.d.L.). We thank Doris Dijksterhuis, Sjoerd Manger, and Thomas Dolman for their valuable
assistance with data acquisition. We thank Timo Stein and Josipa Alilovic for valuable comments on a previous draft
of this manuscript.

Correspondence should be addressed to Simon van Gaal, University of Amsterdam, Department of Psychology,
1001 NK Amsterdam, the Netherlands. E-mail: simonvangaal@gmail.com.

DOI:10.1523/JNEUROSCI.1952-17.2017
Copyright © 2018 the authors 0270-6474/18/382318-10$15.00/0

Significance Statement

While the relationship between expectations and conscious awareness plays a major role in many prediction-based theories of
brain functioning, thus far few empirical studies have examined this relationship. Here, we address this gap in knowledge in a set
of three experiments. Our results suggest that the effect of expectations on conscious awareness varies between different steps of
the hierarchy of predictive processing. While the active use of top– down expectations for perceptual decisions requires conscious
awareness, prediction errors can be triggered outside of conscious awareness. These results constrain and update influential
theories about the role of consciousness in the predictive brain.
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scious access (Melloni et al., 2011; Pinto et al., 2015; Stein and
Peelen, 2015; De Loof et al., 2016) and may help in selecting or
facilitating stimulus interpretation when visual input is ambigu-
ous or noisy (Bar et al., 2006; Denison et al., 2011; Panichello et
al., 2012; Chang et al., 2015; Aru et al., 2016). It is yet an open
question whether expectations can boost an otherwise unseen
stimulus into conscious awareness, thereby enabling the switch
from a nonconscious to a conscious stimulus representation, in-
stead of merely facilitating its cognitive interpretation or making
it appear sooner.

Second, it is an open question to what extent prediction
errors, arising in a situation of invalid expectations, can be reg-
istered outside of conscious awareness. It has been shown that
“oddball” stimuli (e.g., simple violations in auditory tone se-
quences) elicit early mismatch responses in electrophysiological
signals: the mismatch negativity (MMN; Pöppel, 2004; Näätänen
et al., 2007). Interestingly, MMNs can even be observed when
attention is distracted from the tone sequences (Bekinschtein et
al., 2009) or in several reduced states of consciousness, such as
sleep (Ruby et al., 2008), anesthesia (Koelsch et al., 2006), and
vegetative state (Bekinschtein et al., 2009). This suggests that the
MMN reflects a preattentive nonconscious prediction error sig-
nal (Näätänen et al., 2001; Stefanics et al., 2011; Kimura and
Takeda, 2015). However, it remains uncertain whether these sig-
nals originate in model-based comparisons of expectations to
new input or merely reflect passive low-level sensory adaptation
to repeated inputs (Garrido et al., 2009; Stefanics et al., 2016). The
one study in which these mechanisms were dissociated in a non-
conscious state showed adaptation remains operative during
sleep, whereas prediction error detection disappears (Strauss et
al., 2015), thus raising doubts about the notion that prediction
errors may be registered nonconsciously.

The final issue concerns the role of awareness in implement-
ing expectations. Many expectation-based models assume that
expectations are implemented via top– down neural activation.
Interestingly, influential theories of consciousness suggest that con-
scious access requires similar top– down interactions between
higher-level (e.g., prefrontal) and lower-level (e.g., visual) brain
regions, referred to as feedback or recurrent processing (Lamme
and Roelfsema, 2000; Dehaene et al., 2006). Information that
does not reach conscious access is thought to only trigger feed-
forward activity or local recurrent interactions between posterior
brain regions. Therefore, it is unclear how nonconscious informa-
tion, in the absence of feedback signals from higher-order cortical
areas, could lead to the implementation of expectations.

Materials and Methods
Participants
We tested 26 participants in Experiment 1 (21 females; age, 19.5 � 1.3
years), 85 participants in Experiment 2 (63 females; age, 22.0 � 3.2 years),
and 34 participants in Experiment 3 (27 females; age, 20.0 � 1.1 years). All
participants were right-handed and had normal or corrected-to-normal
vision.

For all experiments, participants for whom the minimum number of
observations was � 10 in any condition were excluded from analysis.
Additionally, for Experiment 3 (EEG), we excluded two participants due
to problems with the reference electrodes. In the end, this resulted in the
inclusion of 25 participants for Experiment 1 (20 females; age, 19.5 � 1.3
years), 67 participants for Experiment 2 (49 females; age, 21.9 � 3.0 years),
and 29 participants for Experiment 3 (22 females; age. 20.0 � 1.1 years).

The studies were approved by the local ethics committee of the
University of Amsterdam and written informed consent was obtained
from all participants according to the Declaration of Helsinki. Compen-

sation was €20 for Experiment 1, €25 for Experiment 2, and €30 for
Experiment 3, or equivalents in course credit.

Materials
All stimuli were generated using the Psychophysics Toolbox (Brainard,
1997; RRID:SCR_002881) within a Matlab environment (MathWorks,
RRID:SCR_001622). Stimuli were displayed on an ASUS LCD monitor
(1920 � 1080 pixels, 120 Hz, 50.9 � 28.6 cm screen size, 46.3 pixels/°) on
a “black” (RGB: [0 0 0], �3 cd/m 2) background while participants were
seated in a dimly lit room, �70 cm away from the screen.

Procedure and stimuli
Participants performed an attentional blink (AB) task (Raymond et al.,
1992), in which on every trial a rapid series of visual stimuli was presented
consisting of a sequence of 17 uppercase letters drawn from the alphabet
but excluding the letters I, L, O, Q, U, and V. No letter appeared more than
once per trial. Letters were presented at fixation in a monospaced font (font
size: 40 points; corresponding to a height of �1.2°) for 92 ms each.

Experiment 1. Participants were instructed to detect target letters
within the rapid serial visual presentation (RSVP). The first target (T1: G
or H) was always presented at the fifth position of the RSVP. On most
trials (80%) it was followed by a second target (T2: D or K) at Lag 2, Lag
4, or Lag 10 (respectively 183, 367, or 917 ms later). Each lag was equally
likely. T1 was presented in green (RGB: [0 255 0]), while T2 and the
distractor letters were white (RGB: [255 255 255]; �320 cd/m 2).

Crucially, there was a predictive relationship between the two targets
(Fig. 1A). Namely, in the 80% of trials where a T2 was presented, the
identity of T1 (e.g., G) predicted which T2 was likely (75%, e.g., D) or
unlikely (25%, e.g., K) to appear. On the 20% remaining trials without a
T2, a random distractor letter was presented at the T2 time point (every
distractor letter was presented no more than once per trial.) The mapping
of T1 and T2 was counterbalanced over participants, so that for half of the
participants the most likely target combinations were G–D and H–K
while for the other half G–K and H–D were most likely. To be able to
distinguish different lags in the absence of a T2 stimulus, four gray
squares (RGB: [200 200 200]; �188 cd/m 2; size: 0.35°; midpoint of each
square centered at 1.30° from fixation) were always presented around the
stimulus (T2 or distractor) at the T2 time point. Participants were in-
structed to use the timing information this cue provided when making
decisions about the presence of a T2 (only the letters D or K; all other
letters were distractors).

Following a 150 ms blank period at the end of the RSVP, participants
gave their responses. First, they indicated whether they had seen any T2
by pressing the left or right shift key on the keyboard. The mapping
between the keys and the response options was randomized per trial to
decouple participants’ responses from the decision they had to make.
Then they were asked to make a forced-choice judgment about the T2
letter (D or K) that was presented by typing in this letter. Finally, they
made a similar response about the identity of T1 (G or H). We used long
response timeout durations of 5 s and participants were instructed to
value accuracy over response speed. The intertrial interval, as defined by
the time between the last response and the onset of the stream, was
500 –750 ms.

The experiment consisted of two 1 h sessions on separate days within 1
week. In the first session, participants received instructions about the task
and subsequently performed the task for six blocks of 75 trials (total 300
trials). The goal of the training session was to familiarize participants
with the task. Besides, since we did not instruct participants about the
predictive relationship between T1 and T2, some practice on the task was
required for them to (implicitly) learn this relationship. In the second
session, participants first received a summary of the instructions, after
which the actual experiment started. Participants performed six blocks of
90 trials (total of 540 trials) of the AB task. The first three participants
performed six blocks of 105 trials (630 trials). In both sessions, partici-
pants received summary feedback about their performance at the end of
each block, followed by a short break.

Experiment 2 (EEG). The task in the EEG experiment was the same as
in Experiment 1, except that in Experiment 2, we only asked participants
to give one response by typing in the target letters they observed. In
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addition, we only used two different lags: Lag 3
(275 ms; two-thirds of trials) and Lag 10 (917
ms; one-third of trials). To further increase the
number of trials, the intertrial interval range
was reduced to 200 – 400 ms.

Again, the experiment consisted of two dif-
ferent sessions within 1 week. The first session
(1 h) consisted of instructions followed by ex-
tensive training (720 trials over six blocks) on
the task. Participants were not explicitly in-
formed about the predictive relationship be-
tween the targets. In the second session (2 h),
we first prepared the participant for the EEG
measurements (see below) and gave brief in-
structions about the task. Then, participants
performed 12 blocks of 120 trials (total, 1440
trials) of the AB task.

Experiment 3. To investigate the importance
of T1 detection for expectation effects on con-
scious access, we adjusted the task we used in
Experiment 1 to decrease the visibility of T1
(see Fig. 4A). We now presented T1 in white
instead of green to make it stand out less
among the other stimuli. Furthermore, T1 du-
ration was staircased per participant such that
participants could report T1 on �75% of the
trials. Starting in the second half of the training
and continuing in the experimental session, T1
duration was decreased by one frame (8 ms)
after each block if performance was �85% and
increased by one frame if performance was
�65%. To ensure T1 duration would not devi-
ate too much from the duration of other stim-
uli, T1 duration was only allowed to be in the
range of 42–142 ms (�50 ms different from
other stimuli). The median duration of T1 in the second session was 125
ms. On 20% of trials, no T1 was presented and a random distractor letter
was presented instead. When both targets were present, T1 predicted
which T2 was likely to follow with 75% accuracy.

We made a few changes to the task design to increase the efficiency of
the design. The intertrial interval was reduced to values between 300 and
500 ms. In addition, we asked participants for only one response. They
were asked to type in any target letter they had seen during the trial and
refrain from typing in a T1 and/or T2 letter when they did not see any.
The response was confirmed by pressing the space bar on the keyboard or
when a timeout of 4 s had passed. To further increase the number of trials
per condition, we decided to use only Lag 3 (two-thirds of trials) and Lag
10 (one-third of trials). Because T1 duration was staircased on an indi-
vidual basis, the T1–T2 stimulus-onset asynchrony (SOA) differed be-
tween participants. On average, Lag 3 corresponded to an SOA of 308 ms
while Lag 10 corresponded to an SOA of 950 ms.

Finally, we manipulated the instructions we gave to participants to see
to what extent explicit knowledge of the relationship between T1 and T2
affected our results. As in Experiment 1, we tested participants during
two separate sessions within 1 week. The first group of participants (N �
25) did not receive explicit instructions about the predictive relationships
in either session. Thus, their instructions were similar to those given in
Experiment 1. The second group of participants (N � 19) received ex-
plicit instructions about the T1–T2 relationship at the start of the second
session, and a third group of participants (N � 23) received those in-
structions already at the start of their first session.

The first session (1 h) was used for instructions and training the par-
ticipants on the task (10 � 75 trials). The experimental session in which
participants performed the AB task lasted 1.5 h and contained 16 blocks
of 75 trials (1200 trials).

Experimental design and statistical analysis: behavioral
Preparatory steps were done with in-house Matlab scripts. Statistical
analyses (repeated-measures ANOVAs and paired t tests) were per-

formed using JASP (Jeffreys’s Amazing Statistics Program) software
(Love et al., 2015; RRID:SCR_015823). In situations where a specifically
tested hypothesis did not yield a significant result, we used a Bayesian
equivalent of the same test to quantify the evidence for the null hypoth-
esis (Rouder et al., 2012, 2017). In those cases, using JASP’s default
Cauchy prior, Bayes factors (BFs) were computed for each effect. To
increase the interpretability in analyses with multiple factors, we used
Bayesian model averaging to get a single BF for each effect in ANOVAs.
This BF is the change from prior to posterior inclusion odds and can
intuitively be understood as the amount of evidence the data gives for
including an experimental factor in a model of the data. The BF will
either converge to zero when the factor should not be included, or to
infinity when it should be included in the model. Values close to one
indicate that there is not enough evidence for either conclusion. We use
the conventions from Jeffreys (1967) to interpret the effect sizes of our
Bayesian analyses.

Experiment 1. In our behavioral analyses, we looked at the T2-detection per-
formance, given that T1 was correctly identified. A response was consid-
ered correct when (1) the participant indicated no T2 was present when
no T2 was presented or (2) the participant correctly indicated a T2 was
present and subsequently reported the correct target letter. Since expec-
tation is only a meaningful concept when a T2 target was presented, the
T2-absent trials, on which a distractor letter was presented instead of a
T2, were not taken into consideration for the main statistical analyses.
Trials where one of the responses was missing were deleted from all
analyses. Percentage correct was used in a 3 � 2 repeated-measures
ANOVA with the factors lag (Lag 2, Lag 4, Lag 10) and expectation (valid,
invalid). In a control analysis, we repeated our analyses for Experiment 1
based on the T2-detection responses (ignoring the accuracy of the T2 iden-
tification) as dependent variable (see Results). Since the seen/miss response
is orthogonal to the specific expectations about target letters, this analysis
rules out simple response biases as a potential cause of our effects.

Experiment 2 (EEG). The behavioral analyses for the EEG experiment
were similar to those for Experiment 1. However, the factor lag had only

Figure 1. Task design and behavioral results of Experiments 1 and 2. A, The trial structure of the AB task used in Experiments 1
and 2. Each trial consisted of a stream of rapidly presented letters in which predefined target letters had to be detected and then
reported at the end of the stream. The first target (T1: a green G or H) always appeared at the fifth position. The second target (T2:
D or K) was presented at varying SOAs (lags) after the first one and was marked by placeholders. The identity of T1 predicted which
of the T2 targets was most likely to appear, thereby introducing validly and invalidly predicted T2 targets. On 20% of the trials no
second target was presented and a random distractor letter was presented instead. B, Percentage correct T2 target detection at
each of the T1–T2 lags for valid expectations, invalid expectations, and T2-absent trials in Experiment 1. Validly predicted T2s were
significantly more often perceived than invalidly predicted T2s. C, Percentage of T2 target detection at each of the T1–T2 lags after
a valid or invalid expectation or on a T2-absent trial for Experiment 2. Again, validly predicted T2s were more often perceived, in
particular at short lags. Error bars represent SEM.
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two levels (Lag 3, Lag 10). Percentage correct T2 detection was computed
as in Experiment 1 using only the trials on which T1 was correctly re-
ported. A response was considered correct when the letter a participant
entered was the letter that was presented or when a participant refrained
from entering a letter when none was presented for the T2-absent trials.
In addition, we computed a T2-detection measure to use in a control
analysis: if a participant typed in any letter, we categorize the response as
a “target seen” response, otherwise we call it a “target absent” response.
This outcome measure was used in a control analysis.

Experiment 3. In this experiment, participants gave only one response
by typing in the target they had perceived. Trials on which no response
was given or on which an impossible response was given (e.g., two T1
targets reported) were excluded from analyses. For T1 and T2 separately,
we assessed the accuracy of the responses. The definition of correct and
incorrect responses was the same as in Experiment 2 and we also used the
same T2-detection measure.

Subsequently, T2 percentage-correct detection was used in a 2 � 2 �
2 � 3 mixed ANOVA with the within-subject factors lag (Lag 3, Lag 10),
expectation (valid, invalid), and T1 visibility (T1 seen, T1 missed) and
the between-subject factor instruction (none, Start Session 2, Start Ses-
sion 1). As mentioned before, this between-subject factor was included to
find out whether predictive effects would be modulated by explicit
knowledge of the relation between T1 and T2. To investigate the effect of
T1 visibility in more detail, we followed up the main analyses by other
mixed ANOVAs in which we first split up the dataset based on T1
visibility. In situations where we found interactions with the factor
instruction, we compared the effects of lag and expectation separately per
instruction condition using repeated-measures ANOVAs and paired-
sample t tests.

Finally, to test for an interaction between expectation validity and lag,
we combined behavioral data from all experiments in a post hoc analysis.
Only trials on which T1 was correctly identified were used. For Experi-
ment 1 we averaged data for Lag 2 and Lag 4 to create an average “short
lag” condition. Subsequently, these data were entered into a 2 � 2 � 3
mixed ANOVA with the within-subject factors lag (short, long) and
expectation (valid, invalid) and the between-subject factor experiment
(Experiment 1, Experiment 2, Experiment 3).

EEG measurements
EEG data were recorded with a BioSemi ActiveTwo system and sampled
at 512 Hz (BioSemi). Potentials were measured from 64 scalp electrodes,
along with two reference electrodes on the earlobes and four electrodes
measuring horizontal and vertical eye movements. After data acquisi-
tion, EEG data were preprocessed with the FieldTrip toolbox for Matlab
(Oostenveld et al., 2011; RRID:SCR_004849). First, data were re-
referenced to the linked earlobes, high-pass filtered at 0.01 Hz, and ep-
oched from �0.750 to 1 s surrounding the onset of T2. Data were visually
inspected and trials and/or channels containing artifacts not related to
eye blinks were manually removed, resulting in deletion of on average
9.1% (�3.9%) of trials and 2.0 (�1.7) channels. Independent compo-
nent analysis was used to identify components related to eye blinks or
other artifacts that could easily be distinguished from other EEG signals.
After the independent component analysis, previously deleted channels
were reconstructed based on a nearest neighbor approach. Trials were
baseline corrected to the average amplitude before T1 onset (�0.750 to
�0.275s). As a final step, we applied a 40 Hz low-pass filter to the trial
data, after which event-related potentials (ERPs) were created separately
for each condition of interest.

Experimental design and statistical analysis:
electroencephalography
All EEG analyses are based exclusively on trials where T2 appeared at lag
3 and T1 was correctly identified. We used a combination of Fieldtrip
(Oostenveld et al., 2011) and in-house Matlab scripts to perform our
analyses. As a first step, we performed cluster-based permutation tests
(Maris and Oostenveld, 2007) on the time-window 0 –750 ms from stim-
ulus onset to isolate significant ERP events relating to expectation valid-
ity (valid, invalid; regardless of T2 visibility) or T2 visibility (seen, missed;
regardless of validity) or the interaction between these factors. Next, we

used a Matlab script created in-house to isolate the significant events as
clusters in time and space. For this purpose, we computed an average
difference wave over all channels that were part of the cluster at any point
in time. Subsequently, the onset and offset of a cluster were defined as the
time period around the maximum difference where the difference did
not drop below 50% of this maximum and where at least one channel
showed a significant effect. We then selected the 10 channels that showed
the largest effect in this time window. One of the observed events re-
flected a mixture of the traditionally observed P3a and P3b components
(Sergent et al., 2005; Volpe et al., 2007). Therefore, we split the event into
two clusters by manually selecting either the 32 most anterior or 32 most
posterior EEG channels (from the central midline) before running the
cluster-selection procedure.

As an alternative way to establish potential interactions between T2
detection and validity, we inspected in more detail the clusters isolated in
the previous step. This may be a more powerful (but also less sensitive)
way to detect small effects, because data are averaged over more time
points and channels. Within each of the clusters, we performed a 2 � 2
repeated-measures ANOVA (and its Bayesian equivalent; see Behavioral
analysis) with the factors T2 detection (seen, missed) and expectation
validity (valid, invalid) on the cluster data averaged over channels and
time. To prevent double dipping, in each analysis we only considered the
effects orthogonal to the one used to define the cluster (e.g., not testing
the effect of expectation in a cluster defined based on the expectation
effect).

Results
Experiment 1: (how) do expectations affect conscious access?
In the first experiment we addressed the question of whether
expectations about the likelihood of stimulus identity modulate
the likelihood of conscious access and, if so, in what direction. To
do so, we used the AB paradigm (Raymond et al., 1992). The AB
is an impairment in the conscious perception of the second of two
target stimuli presented in rapid succession when the initial target
was correctly perceived. Here we modified the paradigm in such
a way that the first target (T1: the letter G or H, in green) pre-
dicted which of the second targets would most be likely to appear
in case a T2 target was presented (T2: the letter D or K; predicted,
75%; unpredicted, 25%; in white; Fig. 1A). On 20% of trials we
presented a random distractor letter instead of a T2 target. At the
end of each stream of letters, participants gave three responses.
First, they indicated whether they had seen any of the two T2
targets (seen/unseen response). Second, they were prompted to
make a forced-choice judgment about the identity of T2 (whether
the letter D or K was presented). Third, participants had to make
a similar forced-choice decision about the identity of T1 (whether
the letter G or H was presented; see Materials and Methods).
Participants were not explicitly instructed about the predictive
relationship between T1 and T2.

In Figure 1 we plot the percentage of trials in which T2 was
correctly detected and T1 discrimination was also correct (aver-
age T1 accuracy was 94.20%; SD � 5.77%) for the three different
lags (Lags 2, 4, and 10). T2 was considered detected correctly
when participants indicated they saw it (based on the first response)
and correctly identified it (based on the second response). Overall,
there was a clear AB, as reflected by reduced T2 detection when
the time (i.e., lag) between T1 and T2 was shorter (Fig. 1B; main
effect of lag: F(2,48) � 48.15, p � 0.001). Importantly, expecta-
tions modulated the T2-detection rate. T2 detection was signifi-
cantly better when T1 validly predicted T2 (black lines)
compared with when the expectation was invalid (gray lines,
main effect of validity: F(1,24) � 7.10, p � 0.014; no significant
interaction between lag and validity: F(2,48) � 1.30, p � 0.283).
These results extend beyond findings of several previous studies
(Melloni et al., 2011; Chang et al., 2015; Pinto et al., 2015; Stein
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and Peelen, 2015; Stein et al., 2015) by
showing that conscious perception is
partly determined by the transitional
probability of the input the brain receives.

While these data support the notion
that valid expectations trigger access to
consciousness, it has been recognized that
such findings may not be solely due to
changes in perception, but perhaps are
also due to changes in decision criteria or
response biases (Gayet et al., 2014b; Yang
et al., 2014; Attarha and Moore, 2015). To
rule out the possibility that our effects could
be explained by a response bias in which
people simply report the target letter that
they expected based on T1, regardless of
whether they consciously perceived T2,
we performed an analysis with T2 detec-
tion (instead of T2 discrimination; see
Materials and Methods) as the dependent
variable. This analysis takes into account
only participants’ first response (the seen/
unseen response), regardless of whether
the subsequent T2 letter identification
was correct. Crucially, this analysis cannot
be influenced by any decision/response
biases because the response was orthogo-
nal to the participants’ expectation. Infor-
mation about the most likely letter to
appear cannot predispose participants to
better determine whether a target letter was presented at all. Still,
we observed a qualitatively similar pattern of results (main effect of
validity: F(1,24) � 5.47, p � 0.028). This finding suggests that validity
indeed boosted participants conscious access of T2, instead of merely
eliciting a shift in response bias.

Experiment 2: EEG markers of conscious and nonconscious
expectation violations
Subsequently, we tested whether expectation violations can be
elicited by nonconsciously processed unpredicted stimuli or
whether conscious perception of a stimulus is a prerequisite for it to
trigger neural expectation error responses. To test this, we mea-
sured subjects’ brain activity with EEG while they performed a
similar task as in Experiment 1. First, we replicated the behavioral
effects of Experiment 1 (Fig. 1C). Overall, T1 performance was
high (mean � 93.61%; SD � 7.31%) and T2 detection was higher
at Lag 10 than at Lag 3 (main effect of lag: F(1,28) � 128.72, p �
0.001), reflecting a robust AB. More importantly, validly pre-
dicted T2s were discriminated better than invalidly predicted T2s
(main effect of validity: F(1,28) � 9.49, p � 0.005). The effects were
similar in a control analysis where we considered the percentage
of T2-seen responses (regardless of the exact letter participants
entered), making it less likely that our effect can be explained by a
response bias (main effect of validity: F(1,28) � 4.23, p � 0.049). In
this experiment, the validity effect was significantly modulated by
lag (validity � lag: F(1,28) � 5.86, p � 0.022), an effect that was
numerically similar, but not significant in Experiment 1. Partic-
ipants performed better on valid than on invalid trials at Lag 3,
but there was no convincing evidence for an effect of expectations
at Lag 10 (Lag 3 validity effect: t(28) � 3.40, p � 0.002; Lag 10
validity effect: t(28) � 0.98, p � 0.334). Thus, effects of expecta-
tions were larger in the time window in which T2 more often goes
unperceived.

Next, we investigated potential differences in the neural pro-
cessing of predicted and unpredicted stimuli, as a function of
stimulus awareness. To this end, we contrasted invalidly and val-
idly predicted T2s and tested this difference using cluster-based
permutation testing, correcting for multiple comparisons across
both time (0 –750 ms) and (electrode) space (Fig. 2; see Materials
and Methods; Maris and Oostenveld, 2007). We found one sig-
nificant difference over frontocentral electrode channels, which
reflected greater T2-elicited negativity for invalid compared with
valid trials between 174 and 314 ms (p � 0.015; Fig. 2B), there-
fore potentially reflecting some type of mismatch response. We
then further analyzed this event to test whether the difference was
modulated by, or dependent on, conscious perception of T2. Crucially,
the size of this frontocentral mismatch component was indepen-
dent of T2 awareness (F(1,28) � 0.04; p � 0.850; BF � 0.254; Fig.
2C), indicating that both seen and unseen T2s generated a fron-
tocentral mismatch response.

Additionally, analyses of T2 visibility effects (regardless of expec-
tation validity) replicated previously reported findings (Kranczioch
et al., 2003; Sergent et al., 2005; Harris et al., 2013). In these anal-
yses, we examined the difference in ERPs following seen and
missed T2s using a cluster-based permutation test (Fig. 3), reveal-
ing two significant events. First, a significant negative difference
could be observed over (left) posterior electrodes from 170 to 355
ms after T2 onset (p � 0.010; Fig. 3A). This event was followed by
a significant long-lasting positive event (p � 0.001), reflecting a
mixture of the P3a and P3b components, extending over frontal
and central electrodes.

Subsequently, we had a closer look at the interactions between
conscious access and expectation validity. Therefore, we analyzed
in more detail the ERP events isolated in the previous step (Fig.
3B–G). For this analysis we first isolated the traditionally ob-
served AB-related P3a and P3b ERP components from the long-

Figure 2. ERP effects related to T2 prediction validity. A, Topographic maps of the difference between validly and invalidly
predicted T2s over time (0 corresponds to T2 onset). Cluster-based permutation tests were used to isolate the significant events,
while correcting for multiple comparisons across time and (electrode) space. On each head map, channels with a significant effect
for �50% of its time window are highlighted. B, The average ERP time course of the 10 channels shown on the head map on the
left, shown separately for each validity condition. The significant time-window is marked by a black line above the x-axis. Invalidly
predicted T2s were associated with greater frontocentral negativity than validly predicted T2s. C, Bar graphs showing the average
amplitude of the four conditions (visibility�prediction) for the significant neural event shown in B. In all plots error bars represent
SEM.
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lasting positive ERP event that differentiated between seen and
missed T2s (Sergent et al., 2005). Doing so resulted in an early
positive P3a cluster (Fig. 3D) over frontocentral channels that
was significant between 395 and 586 ms and a somewhat later
positive P3b cluster (Fig. 3F) over more posterior parietal chan-
nels, which was significant between 445 and 611 ms. Within
each of these clusters we performed repeated-measures ANOVAs
with the factors validity and T2 detection. We found no evidence
in any of the events that the T2 detection effect was modulated by
expectation validity (early left-posterior event: F(1,28) � 0.29; p �
0.597; BF � 0.260; P3a: F(1,28) � 1.56; p � 0.222; BF � 0.230;
P3b: F(1,28) � 2.10; p � 0.159; BF � 0.296), though the BF values
suggest that the evidence for the absence of such interactions is
moderate at best. This is somewhat surprising, because especially
the late positive events have previously been related to conscious
access (Sergent et al., 2005; Rutiku et al., 2015) and metacogni-

tion (Desender et al., 2016). However, re-
cent investigations show they may reflect
cognitive processing at even later stages,
merely arising as a consequence of be-
coming consciously aware of information
(Pitts et al., 2014; Silverstein et al., 2015).
We did not find evidence that the ampli-
tude of these ERP events was modulated
by expectation validity, which may sug-
gest that once a stimulus has been per-
ceived consciously, it is irrelevant whether
or not the expectation was valid.

Finally, we directly tested for an inter-
action between conscious access and ex-
pectation by comparing the validity ERP
effect (invalid–valid) for T2 seen and T2
missed trials in a cluster-based permuta-
tion test (this analysis takes into account
the entire scalp topography). Again, no
significant interactions between these fac-
tors were observed (all cluster p’s � 0.10).

Experiment 3: the role of conscious
awareness in implementing
top– down expectations
In our final experiment, we addressed the
question of whether expectation forma-
tion itself can unfold in the absence of
awareness and subsequently influence
conscious access (Fig. 4). To address this
question, we changed the color of T1 from
green to white and for each subject stair-
cased T1 duration in such a way that T1
was correctly identified on �75% of the
trials (actual T1 identification perfor-
mance: mean � 76.03%; SD � 8.65%). T1
duration did not differ between trials
where T2 was seen and trials where T2 was
missed (T2 detection: t(66) � 0.31, p �
0.752; T2 seen: mean � 117.42 ms; T2
missed: mean � 117.46 ms), which indi-
cates that T1 visibility was not determined
by stimulus duration. Likely, internal
fluctuations in the system (e.g., variability
in attention) must be causing participants
to sometimes see T1 and sometimes miss
it. Moreover, on 20% of trials no T1 was

presented (but replaced by a distractor). Further, to test to what
extent explicit knowledge of the predictive relationships between
stimuli would increase the validity effects, we varied the moment
at which explicit information about the predictive relations be-
tween T1 and T2 was provided. The experiment consisted of a
training session and a test session on separate days. A first group
of subjects received no explicit instructions about the predictive
relations in either session and had to learn them implicitly through
experience with the task; the second group received explicit instruc-
tions about the T1–T2 relations in the test session only, but not in the
first training session; and the third group received explicit instruc-
tions already from the start of the experiment.

T1 visibility strongly affected T2 detection. When T1 was seen,
T2 detection was markedly lower than when T1 was missed (main
effect of T1 awareness: F(1,64) � 4.62, p � 0.035), in particular at
short lags (T1 awareness � lag: F(1,64) � 72.95, p � 0.001). Validly

Figure 3. ERP effects related to T2 visibility analyses. A, Topographic maps showing the difference between seen and missed
T2s over time (0 corresponds to T2 onset). Cluster-based permutation tests were used to isolate the significant events while
correcting for multiple comparisons across time and (electrode) space. On each head map, channels showing a significant differ-
ence for �50% of its time window are highlighted. Three events were isolated based on the permutation tests. B, D, F, For each
of the events individually, the average ERP time course of the 10 channels shown on the head map on the left, separately for
T2-seen and T2-missed conditions is shown. The significant time-window is marked by a black line above the x-axis. C, E, G, Bar
graphs showing the average amplitude of the four conditions (visibility � prediction) for the significant neural events shown in B,
D, F. In all plots error bars represent SEM.
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predicted targets were detected more of-
ten (main effect of validity: F(1,64) � 33.39,
p � 0.001). The effect of expectation va-
lidity on T2 detection varied as a function
of T1 awareness and instructions (T1
awareness � validity: F(1,64) � 40.55, p �
0.001; validity � instruction: F(1,64) �
5.91, p � 0.004; T1 awareness � valid-
ity � instruction: F(2,64) � 11.33, p �
0.001). When T1 was seen (Fig. 4B), a clear
AB was observed (main effect of lag:
F(1,64) � 170.01, p � 0.001) and validly
predicted targets were more often de-
tected than invalidly predicted targets
(main effect of validity: F(1,64) � 64.97,
p � 0.001; as in Exps. 1 and 2). Like in the
previous experiments, a control analysis
considering only the percentage of T2-seen
responses (regardless of the exact letter partic-
ipants entered) also revealed a significant
effect of validity (main effect of validity:
F(1,64) � 65.83, p � 0.001), making it un-
likely that response biases are causing the
effect. Interestingly, we also observed a
significant AB for missed T1s, reflecting a
nonconsciously elicited AB (main effect of
lag: F(1,64) � 74.42, p � 0.001). This AB
effect cannot be explained by an overall
T2-detection performance benefit for tar-
gets presented later in the trial because the
AB was larger for trials on which T1 was presented but missed
compared with trials on which no T1 was presented in the trial
(lag � T1 presence: F(1,66) � 24.19, p � 0.001). However, al-
though missed T1s triggered an AB, expectation validity did not
affect T2-detection performance for missed T1s (main effect of
validity: F(1,64) � 0.35, p � 0.554), regardless of the type of in-
struction participants received about the predictive relation be-
tween T1 and T2 (validity � instruction: F(2,64) � 0.64, p �
0.533). A Bayesian equivalent of the repeated-measures analysis
strongly suggested validity should not be included in a model of
the data (BF � 0.084).

The above results highlight that only when T1 was seen, valid
expectations facilitated T2 detection. A post hoc analysis on T1-
seen trials only revealed that this effect was modulated by how
explicitly we instructed participants about the predictive rela-
tionship between T1 and T2 (validity � instruction: F(2,64) �
14.83, p � 0.001). The validity effect, as defined by the difference
between valid and invalid trials, averaged across the two lags,
increased with more explicit instructions (Group 1: 1.87%; Group
2: 19.53%; Group 3: 26.27%). These results indicate that, not only
does the visibility of T1 define the predictive impact on T2 detec-
tion, but also the extent to which these predictive relations are
explicitly known affects the impact of expectations on conscious
access. This may also explain why the validity effect appeared
more pronounced in Experiment 3 than in Experiments 1 and 2:
in Experiments 1 and 2 subjects were not explicitly instructed
about the predictive relations between T1 and T2.

Finally, in contrast to Experiment 2, on T1-seen trials the
validity effect was independent of lag (validity � lag: F(1,64) �
1.750, p � 0.191). Since we anticipated stronger expectation ef-
fects at short lags, behavioral data from all three experiments was
combined in a post hoc analysis. Only trials on which T1 was
correctly identified were used and for Experiment 1 we averaged

data for Lag 2 and Lag 4 to create an average “short lag” condi-
tion. A significant interaction between validity and lag showed
that across all experiments, the expectation effect was stronger at
short lags compared with the long lags (validity � lag: F(1,118) �
5.73, p � 0.018; no validity � lag � experiment interaction:
F(2,118) � 0.065, p � 0.937).

Discussion
In this report we investigated three important questions regard-
ing the intricate relationship between top– down expectations
and conscious awareness. The first question that we addressed
was how prior information about the identity of an upcoming
stimulus influences the likelihood of that stimulus entering con-
scious awareness. Using a novel AB paradigm in which the iden-
tity of T1 cued the likelihood of the identity of T2, we showed that
stimuli that confirm our expectation have a higher likelihood of
gaining access to conscious awareness than stimuli that violate
our expectations, especially at short lags. The expectation effect
was qualitatively similar across all three experiments, regardless
of subtle experimental differences in task design and overall per-
formance between those experiments. Furthermore, it could not
be explained by simple shifts in the response criterion, because it
was also present for a dependent measure orthogonal to the expec-
tation manipulation. Together, this suggests that valid expectations
amplify the perceptual strength of a stimulus and therefore increase
the chance of conscious access, possibly due to the sharpening of
its neural representations (Kok et al., 2012). This interpretation is
supported by previous experiments that have shown varying ef-
fects of expectations on (subjective) perception, such as studies
showing that prior knowledge increases the speed (Melloni et al.,
2011; Chang et al., 2015; Pinto et al., 2015; De Loof et al., 2016)
and accuracy (Stein and Peelen, 2015) of stimulus detection. Fur-
thermore, our findings complement recent studies showing that

Figure 4. Task design and behavioral results of Experiment 3. A, Trial structure of the task used in Experiment 3. T1 visibility was
staircased at �75% correct by manipulating its duration (on 20% of trials no T1 was presented). B, Percentage of correct T2 target
detection at each of the T1–T2 lags after a valid or invalid expectation and on a T2-absent trials for trials where T1 was correctly
reported (T1 seen). As in Experiments 1 and 2, when T1 was seen, validly predicted T2s were more often detected than invalidly
predicted T2s. C, Solid lines show percentage of T2 target detection at each of the T1–T2 lags after a valid or invalid expectation and
on T2-absent trials for trials where T1 was presented but missed. In contrast to T1-seen trials (B), when T1 was not seen, validity did
not enhance T2 detection. However, a missed T1 still triggered a significant AB, compared with trials on which no T1 was presented
(dotted line). Error bars represent SEM.
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the AB can be reduced when there is knowledge about temporal
statistics of the task (Lasaponara et al., 2015; Visser et al., 2015) or
when the latency of T2 targets is explicitly cued (Martens and
Johnson, 2005; Nieuwenstein et al., 2005). In addition, two recent
reports have shown that when attention is diverted, in some sub-
jects expecting the presentation of a stimulus can elicit an illusory
stimulus percept even though no stimulus is presented. (Mack et
al., 2016; Aru and Bachmann, 2017). Future experimentation is
required to shed light on the generalizability of our effect to sim-
pler tasks. Such experiments may also consider using other mea-
sures of subjective perception (e.g., perceptual awareness scale;
Overgaard et al., 2006).

The second question we addressed was related to the extent to
which nonconscious stimuli can trigger prediction error responses,
as measured with EEG. Over the last 20 years, we and others have
shown that nonconscious information processing is rather so-
phisticated (Dehaene and Changeux, 2011; van Gaal and Lamme,
2012), and that a diverse range of high-level cognitive processes
can unfold nonconsciously (Dehaene et al., 2001; Custers and
Aarts, 2005; Lau and Passingham, 2007; Pessiglione et al., 2007,
2008, van Gaal et al., 2010, 2012, 2014). Interestingly, in Experi-
ment 2 we found that expectations violated by a nonconscious
stimulus trigger a stronger negative frontocentral ERP compo-
nent than expectations that are confirmed. This neural event was
similar for trials on which T2 was seen and on trials where T2 was
missed, highlighting that conscious awareness of a stimulus is not
a prerequisite for it to trigger a prediction error response (Mathews et
al., 2014; Malekshahi et al., 2016). This effect may reflect a mis-
match signal, similar to the MMN (Näätänen et al., 2007), which
is a negative deflection following oddball stimuli that develops
100 –200 ms after stimulus onset. Sometimes this effect lasts lon-
ger, in some experiments until �400 ms, depending on the spe-
cifics of the task and stimulus material (Pöppel, 2004; Stefanics et
al., 2011; Kimura and Takeda, 2015). While in terms of interpre-
tation this effect is similar to a mismatch effect, its topography is
slightly different than a typical visually evoked MMN, which gen-
erally peaks more posteriorly, although considerable variation in
its topography has been reported (Pöppel, 2004). Alternatively, it
is possible that the higher activation for valid compared with
invalid trials corresponds to the frontal selection positivity, which
is a well known marker of nonspatial attentional processes (Ken-
emans et al., 1993). In our paradigm, this could be explained as
improved attentional selection when expectations are confirmed.
Although the exact nature of the observed component deserves
future experimentation, the key finding is that the effect was
independent of T2 perception and purely depends on the validity
of the expectation. This is in line with studies that have shown
context influences on nonconscious information processing (Na-
kamura et al., 2007; Van Opstal et al., 2011; Gayet et al., 2014a;
Rohaut et al., 2016), studies that have shown that the MMN can
be observed when the expectation violations are unattended
(Bekinschtein et al., 2009; Stefanics et al., 2011; King et al., 2013;
Dykstra and Gutschalk, 2015; Kimura and Takeda, 2015), and
more generally evidence for relatively high-level processing of
nonconscious stimuli (Luck et al., 1996; van Gaal and Lamme,
2012; Silverstein et al., 2015). Nevertheless, the absence of inter-
actions in the ERP is also somewhat surprising (but see Rutiku et
al., 2016), because as noted earlier such interactions between ex-
pectation validity and conscious T2 detection were present in
behavior. A neural basis for this effect should exist, but may be
very subtle. Recently, a study by Aru et al. (2016) found early
(�100 ms) differences in signal amplitude over posterior chan-
nels that predicted the behavioral benefit of prior knowledge on

the detection of stimuli presented at the threshold of perception.
Another potentially interesting signature to investigate could be
the onset of components related to conscious perception (Mel-
loni et al., 2011) and how they relate to expectations. Moreover, it
is possible that instead of signal strength, it is the signal-to-noise
ratio or sharpness of the representation that is improved (Kok et
al., 2012). Possibly, valid expectations do not modulate the am-
plitude of the neural response, but instead increase the specificity
of the neural representation.

In the final experiment, we showed that conscious perception
of T1, initiating the expectation, is a prerequisite for influences on
conscious access to occur. In the subset of trials where subjects
did not see T1, there was no expectation effect on T2-detection
performance. This result contrasts with findings from a recent
study that suggested that some priors may operate noncon-
sciously (Chang et al., 2016). Chang and colleagues presented
participants with masked gray-scale natural scene images and
found that the nonconscious processing of these images im-
proved subsequent recognition of their degraded counterparts,
so-called “Mooney images,” presented seconds later. One expla-
nation for this difference is that the priors on which the effects of
Chang et al. relied may be more automatic and hard-wired than
the relatively arbitrary relationships that people must learn and
actively use in our experiments. It is possible that lower-level, auto-
matic expectations are more easily processed outside of awareness
compared with the more active ones studied here.

Further, it is also possible that with more training we would
find nonconscious expectation effects. However, since subjects
were already trained on the task on a separate day before performing
the experimental session, this possibility seems unlikely. We did
observe greater validity effects when subjects were made explicitly
aware of the predictive nature of T1, suggesting that explicit
knowledge of stimulus associations can facilitate the effects of
stimulus-induced expectations. Finally, it should be noted that
we did not test the full range of timing intervals between T1 and
T2. It has been shown and proposed that the processing of non-
conscious stimuli is relatively fleeting (Greenwald et al., 1996;
Dehaene et al., 2006; but see King et al., 2016), so it is conceivable
that the T1–T2 lags that we have used here may have been too
long to observe expectation effects triggered by unseen T1s. Nev-
ertheless a significant AB was observed on trials on which T1 was
missed, indicating that attention was still captured by a missed T1
at the T1–T2 lags used here. This latter result is in line with
evidence showing that nonconscious stimuli are able to trigger
attentional capture (Ansorge et al., 2009; Mulckhuyse and
Theeuwes, 2010; Hsieh et al., 2011) and with a study showing
lower T2 detection for T1s that were missed compared with trials
without a T1 [in that experiment this effect was independent of
lag (Nieuwenstein et al., 2009)].

In summary, three main conclusions can be drawn from the
present series of studies. First, expectation confirmation, com-
pared with violation, increases the likelihood of conscious aware-
ness, suggesting that valid expectations amplify the perceptual
strength of a stimulus. Second, nonconscious violations of con-
scious expectations are registered in the human brain. Third,
expectations need to be implemented consciously to subse-
quently modulate conscious access. These results suggest a differen-
tial role of conscious awareness in the hierarchy of predictive
processing, in which the active implementation of top–down expec-
tations requires conscious awareness, whereas a conscious expecta-
tion and a nonconscious stimulus can interact to generate
prediction errors. How these nonconscious prediction errors are
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used for updating future behavior and shaping trial-by-trial
learning is a matter for future experimentation.
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